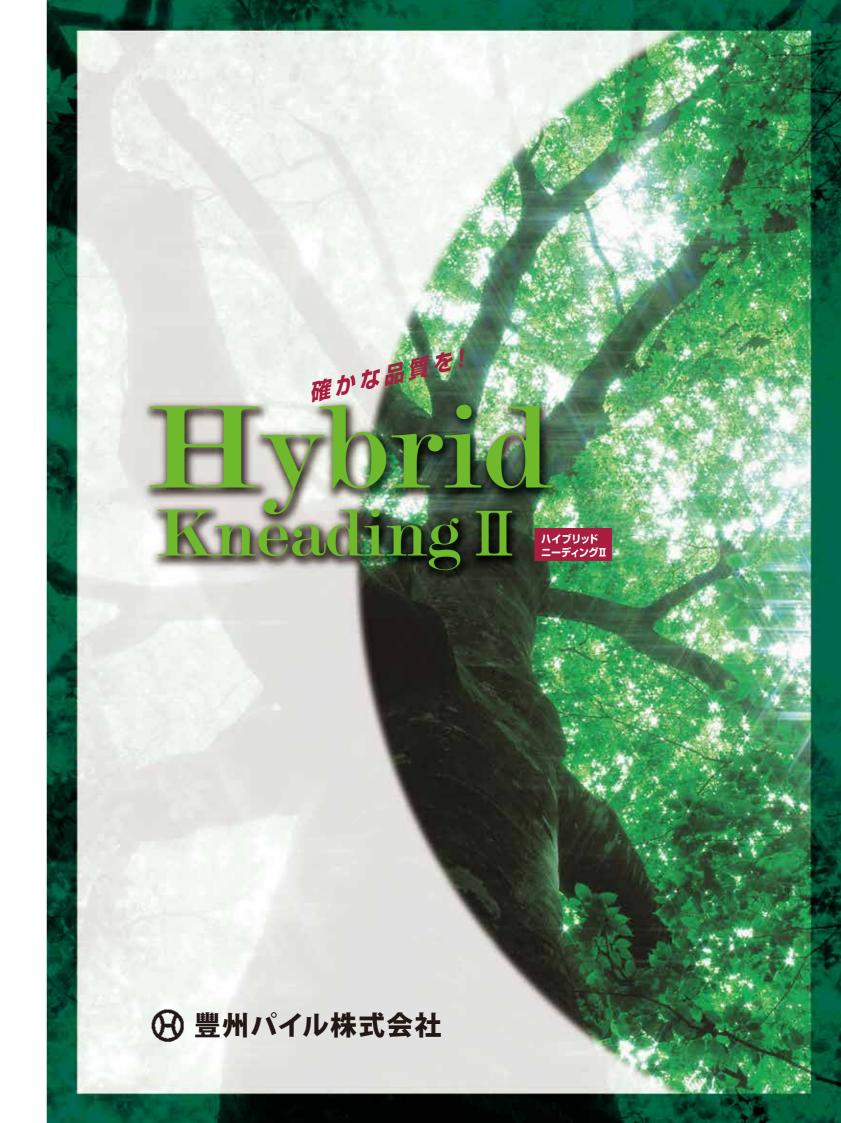
HybridニーディングⅡグループ

三谷セキサン株式会社


株式会社アオモリパイル

藤村クレスト株式会社

豐州パイル株式会社

② 豊州パイル株式会社

http://www.housyuu-pile.co.jp

(日) 豊州パイル株式会社

http://www.housyuu-pile.co.jp

認定番号 TACP-0423(砂)

認定番号 TACP-0424(礫)

🖊 注意とお願い

- ●本カタログに掲載しました仕様は、令和7年9月1日現在のものです。
- ●掲載した仕様および内容は、予告なく変更する場合があります。
- ●掲載した工法、および製品によって建築物の基礎を設計する場合、関連法規等を遵守して、適正な設計をしていただきますよう、 お願いいたします。
- ●地域により地盤、土質性状が異なり、各製品、工法での性能が均等に発揮できない場合があることをご了承ください。
- ●工法、製品に関しましては、施工現場の立地条件・各工場の生産能力等により、ご希望の仕様で施工できない場合がございますの で、あらかじめご了承ください。
- ●本カタログに記載した施工については、豐州パイル株式会社が行います。
- ●本カタログに関するご不明な点、または詳細な内容につきましては、本社または各営業所にお問い合わせください。

🔼 「免責事項」

本カタログ掲載の製品・工法に関して問題が発生した場合には、下記の免責事項を踏まえた上で、 当社にて対応させていただきますので、お願い申し上げます。

- ●本カタログまたは認定書に記載された事項に反した設計・施工により問題が発生した場合
- ●本カタログまたは認定書に記載された仕様以外に、使用者の指示した仕様、施工方法等により問題が発生した場合
- ●本カタログまたは認定書に記載された仕様以外に、使用者から支給された材料・部品により問題が発生した場合
- あらかじめ定めた用途・部位以外に使用し、それにより問題が発生した場合
- ●豐州パイル株式会社以外の会社によって施工され、これにより問題が発生した場合
- ●使用者もしくは第三者の故意、または過失により問題が発生した場合
- ●引渡し後、構造・性能・仕様等の改変を行い、これにより問題が発生した場合
- ●瑕疵(カシ)を発見後、すみやかに届けがなされず、これにより問題が発生した場合
- ●構造物の変形・老朽化・外部からの衝突等・製品以外の外的要因により問題が発生した場合
- ●開発・製造・販売・施工時に通常予想される環境(温度・湿度・水位・地盤状況・その他)等の条件以外における使用に起因する
- ●地震·落雷·風害·津波などの天災により、設計時に想定された以上の不可抗力が原因となり問題が発生した場合
- ●火災または地震・落雷等による2次的災害により問題が発生した場合
- ●戦争・外国の武力行使・内乱・その他これらに類似した事変や暴動により問題が発生した場合
- ●核燃料物質による放射性・爆発性その他有害な特性により問題が発生した場合

HKWII 長期許容鉛直支持力

$R_{a} = \frac{1}{3} \{ \alpha \overline{N} A_{p} + (\beta \overline{N}_{s} L_{s} + \gamma \overline{q}_{u} L_{c}) \Psi \} (kN)$

α: 杭先端支持力係数

 $\alpha = 350$

N: 杭先端平均N値(杭先端から上方に2m、下方に1.5D。区間、20≦N≦60) (根固め部下方の地盤は平均N値以上の地盤が在るものとする)

Do: 杭先端部径(m)

A。: 基礎杭の先端の有効断面積(m²)

 $A_p = \pi \cdot D_0^2 / 4$

β:砂質地盤における杭周面摩擦力係数

 $\beta = 4.4$

γ: 粘土質地盤における杭周面摩擦力係数

 $\gamma = 0.7$

 $\overline{N_s}$: 杭周囲の砂質地盤の平均N値(N \leq 100、 $\overline{N_s}$ \leq 30) L $_s$: 杭周囲の砂質地盤の長さ

qu: 杭周囲の粘土質地盤の平均一軸圧縮強さ(40≦qu≦200) Lo: 杭周囲の粘土質地盤の長さ

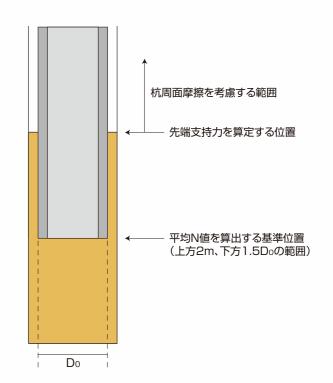
 ψ : 基礎杭の周囲の有効長さ(m)

ψ=π•D D:杭径(m)

短期許容鉛直支持力は長期許容鉛直支持力の2倍とする。

■適用する地盤の種類

基礎ぐいの先端地盤:砂質地盤、礫質地盤 基礎ぐいの周囲の地盤:砂質地盤及び粘土質地盤

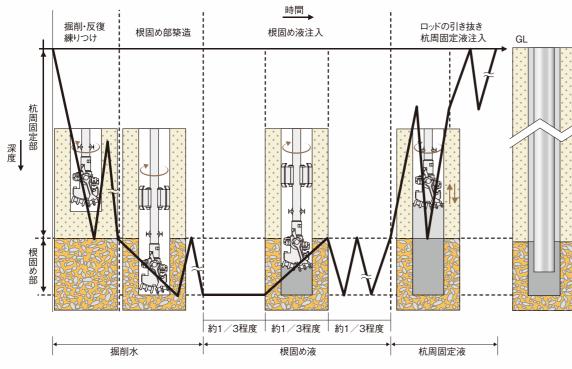

■最大施工深さ

■工事施工者及び管理者

豐州パイル株式会社

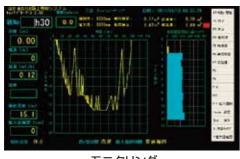
地盤から決まる長期許容鉛直支持力(KN)

杭先端部径 Do (mm)	杭先端平均N値					
	20	30	40	50	60	
300	164	247	329	412	494	
350	224	336	448	561	673	
400	293	439	586	733	879	
450	371	556	742	927	1113	
500	458	687	916	1145	1374	
550	554	831	1108	1385	1663	
600	659	989	1319	1649	1979	
700	897	1346	1795	2244	2693	
800	1172	1759	2345	2932	3518	
900	1484	2226	2968	3711	4453	
1000	1832	2748	3665	4581	5497	

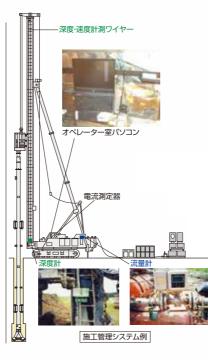


杭材から決まる長期許容鉛直支持力(KN)

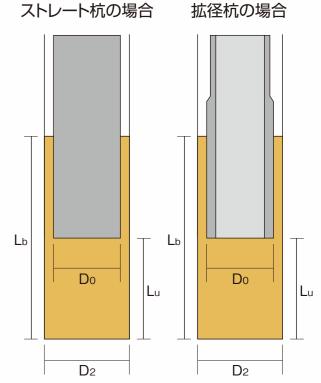
杭先端部径 (mm)	HS-PHC A種	HS-PHC C種	HS-PHC105 A種	HS-PHC105 C種	CPRC I種	CPRC IV種
300	900	630	1180	900	780	810
350	1090	770	1420	1090	960	990
400	1370	960	1780	1370	1220	1270
450	1670	1170	2170	1670	1490	1540
500	2110	1480	2740	2110	1910	1960
600	2880	2020	3750	2880	2620	2700
700	3770	2640	4900	3770	3450	3510
800	4770	3340	6200	4770	4480	4550
900	6003	4329	7650	5880	5650	5730
1000	7259	5231	9240	7110	6860	6930


標準的な施工手順

- ① 攪拌バー・練り付けドラムを備えた特殊ロッド及び屈折した2本のアームを有する特殊オーガーヘッド を用いて、適宜掘削水を注入し孔内を攪拌し、練り付けドラムで泥土を孔壁に練り付けながら、根固め 部上端深度まで掘削・反復をする。
- ② 根固め部の所定区間を掘削・反復する。
- ③ 根固め部の区間に根固め液(水セメント比=60%のセメントミルク、掘削体積の所定量分)を注入し、 所定の方法で混合・攪拌しながら、根固め球根部を築造する。
- ④ 掘削孔に杭周固定液(水セメント比=60%のセメントミルク、掘削体積の所定量分)を注入し、孔内を 混合・攪拌しながら掘削ロッドを引き上げる。
- ⑤ 掘削孔に杭を建て込み、杭を自重沈設後、圧入及び回転沈設により、所定の深度に定着させる。

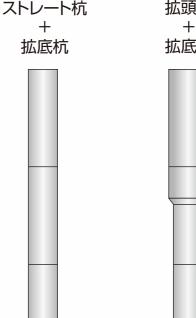

施工管理装置 GEOMUSTER

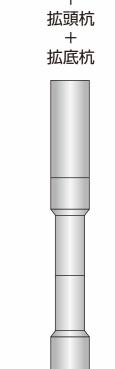
施工管理装置「GEOMUSTER」は、各種センサーを杭打機 本体に搭載し、検出した一連のデータをコンピュータによっ て処理することで、リアルタイムに地盤状況・施工状況をモ ニタリングできる施工管理システムです。


モニタリング

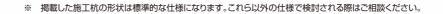
※モニタリング表示は一例であり、表示画面が異なることがあります。

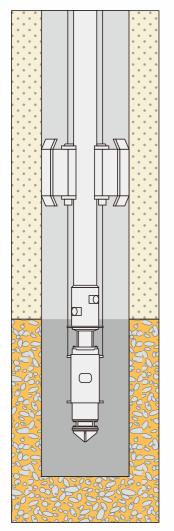
根固め球根の形状


杭先端部径 Do (mm)	根固め球根			根固め液配合 ※1		
	根固め部径 D2、	根固め部長 Lb	杭下長 Lu	セメント	水	練上り量
	(mm)	(mm)	(mm)	(kg)	(kg)	(m³)
300	500	1450	1000	320	192	0.29
350	550	1530	1000	410	246	0.37
400	600	1600	1000	510	306	0.46
450	650	1680	1000	620	372	0.56
500	700	1750	1000	750	450	0.68
550	750	1830	1000	890	534	0.81
600	800	1900	1000	1050	630	0.96
700	900	2100	1050	1470	882	1.34
800	1000	2400	1200	2070	1242	1.89
900	1130	2700	1350	2960	1776	2.71
1000	1250	3000	1500	4030	2418	3.69



※1 配合は、セメントの密度を普通ボルトランドセメントおよび早強ボルトランドセメントの標準的な値を用いて算出した値です。これら以外のセメントを用いる場合、試験成績表等に記載された値を用いて別途算出する必要があります。

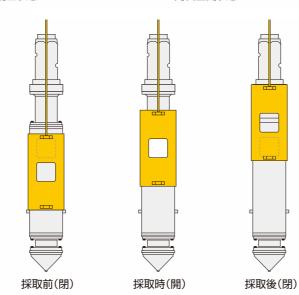

施工杭の形状 ストレート杭 ストレート杭



ストレート杭

根固め部の未固結試料採取

未固結試料採取ヘッドにより、根固め部のソイルセメントを採取し、密度や圧縮強度を確認する。



②内管より試料採取

外管閉塞状態

※掲載した未固結試料採取ヘッドは未固結試料採取装置の一例です。 杭仕様や施工機械によっては仕様の異なる未固結試料採取ヘッドを使用する場合がございます。

[パイル営業品目]

Fc=85N/mm² HS-PHCパイル シリーズ

HS-HOPパイル

豊州-CPRCパイル

PRC-HOPパイル

Fc=105N/mm² HS-PHC105パイル シリーズ

HS-HOP105パイル

[工 法]

●Hybridニーディング工法

●HybridニーディングII工法

●MFC-II工法

●F.I.工法 (プレボーリング拡大根固め工法)

●セメントミルク工法

●打撃工法 他

[施工管理装置]

ジオマスター (GEO MUSTER)

[無溶接継手]

T·P JOINT

